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Abstract 

We study the bandwidths in free electron lasers(FELs) under different circumstances; For 

weakly saturated FELs in storage rings, the bandwidth is given by the formula derived in the super 

mode theory, while it is given by the Fourier tranform of the electron pulse length in the strongly 

saturated FELs in Iinacs. The limiting bandwidth for the case of a DC beam is given by a 

Schawlow-Townes formula, but the approach to the limit is very slow. 

1. Introduction 

There has been some confusion on the achievable bandwidth in free electron laser (FEL) 

osciIIators[11. One often hears about the transform limited bandwidth, which is the bandwidth 

limited by the Fourier transform of the electron beam. In the supermode theory, the bandwidth is 

given by a geometric average of the gain bandwidth and the transform limited bandwidth [21, [31, 

[4]. Extension of the Schawlow-Townes limit [51 to FEL has also been discussed [6]. In this 

paper, we study the evolution of the spectral and the temporal profile in FELs in terms of a simple 

but physically reasonable model introduced in section 2, and determine the circumstances under 

which different bandwidth formula are applicable. 

We show in section 3 that the bandwidth of the optical pulse narrows as IMl as the 

number of the passes n of the electron beam through the optical cavity increases [7]. The temporal 

width also narrows in a similar fashion in the beginning of the intensity build-up. This, together 

with the fact that the product of the temporal and the spectral width must be greater than a minimum 

value, leads to the limiting bandwidth predicted by the super mode theory. The supermode theory 

is valid for a weakly saturated system such as storage ring based FELs, where the gain can be 

regarded as a constant. 

For Iinac based FELs discussed in section 4, however, the optical power evolves to a level 

where the reduction of gain due to high intensity,i.e., the gain saturation, becomes important. 

Observing that the gain saturation is homogeneous in frequency but inhomogeneous in time, we 

derive that the limiting bandwidth is then given by the Fourier transform of the electron pulse 

length. In this discussion, we find it necessary to distinguish between the intensity saturation from 

the" spectrum sauration"; The time to reach the limiting spectrum is typically longer than the time 

to reach the intensity saturation. 

1 



For the case of a DC electron beam, the narrowing of the bandwidth continues until it 

reaches a small value determined by the spontaneous radiation. However, as the bandwidth 

narrowing is slow, IMI, it takes a long time to reach this value, typically a day or longer. This is 

discussed in section 5. 

2. Equation for EEL Eyolution 

We consider the evolution of the optical signal in a FEL cavity. The increase of the optical 

power during the nth passage of the electron beam consists of two terms, that due to the 

amplification of the power already present and that due to the spontaneous radiation. Let 

dp(co;t;nYdco be the t-dependent spectral density of the optical power at the beginning of the nth 

passage, and dS(co;tYdco a similar quantity due to the spontaneous radiation emitted in one pass. 

Here, (i) is the frequency and ct (c = speed of light) is the distance from the pulse center. Notice 

that co and 't are conjugate variables under Fourier transformation. Thus, the quantity 

dP(co,'t;n)/dco should be, strictly speaking, understood as the Wigner distribution [8]. However, it 

can be loosely interpreted as the spectral density evaluated at 't, when the following inequality is 

valid: 

(I) 

Here 0co and 0t are the rms values of the spectral and the temporal widths, as follows: 

(2) 

(3) 

Here, COo is the central frequency. 

With this interpretation, a simple model for the evolution of the optical power may be 

written as follows: 

..d..(dP(co,'t;n})=( ( . )_ }dp(co,'t;n} .d.S. 
dn dco g co,'t,n a dco + dco 
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Here g is the gain parameter and 0. is the total loss per round trip. 

To solve the evolution equation, we need to specify the behavior of the gain function 

g(oo,"t;n). We consider the cases of storage rings and linacs separately. 

3. Supermode Bandwidth in StoraL:e RinL: Based EELs 

In storage ring based FELs, the saturation is due to the induced energy spread and bunch 

lengthening of the electron beams that accumulate from pass to pass. The power level at saturation 

is detennined by a balance between the inhomogeneous gain reduction and radiation damping, and 

given by the Renieri limit [9] . It is well below the level at which particle trapping in the 

ponderomotive potential becomes significant. Therefore, we may assume that the gain is 

independent of the optical power and n, as follows: 

g(oo;t;n) = goF(oo}T(-t} . (5) 

The function F(Ul) describes the frequency dependence of the gain. For frequencies near the 

resonance frequency UlO' 

(6) 

In the above, ON is the gain bandwidth, given approximately by 

(7) 

where N is the number of the undulator periods. 

The function T('t) describes the temporal profile of the electton pulse: For't near the pulse 

center, it is of the form 

_ (.-L)2 T('t) - 1 - 2~ . (8) 
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Here q is the rms bunch length of the electron pulse in time. 

With the gain function specified by Eq. (5), Eq. (4) can be solved easily. The result is: 

dP(ro;t;n) 

dro 
Exp[(goF(ro)T(t)-a)n]-1 dS 

goF(ro)T(t)-a dro (9) 

In view of Eqs. (6) and (8), Eq. (9) implies that the spectral width and the temporal width of the 

optical pulse (defined by Eqs. (2) and (3)) become narrower as the number of passes n increases as 

follows: 

(10) 

(II) 

The simultaneous narrowing in the spectral width Eq. (10) and in the temporal width, Eq. 

(11), must stop to be consistent with the inequality (2). This occurs for 

The limiting bandwidth in this case is 

n ~ nc = 21tCOf 
gOAN 

Oro - V _1 ___ A_ 
ro - 2N 41tccri 

(12) 

(13) 

This is a geomenic average of the gain bandwidth and the transform limited bandwidth discussed 

in the following section. Equation (13) was first derived in the context of the super mode 

theory[2]. The simultaneous narrowing of the spectral and the temporal widths was discussed in 

Ref. [3] . 

Equation (13) appears to be consistent with the results of FEL experiments in storage rings 

[3], [4] (with a suitable replacement of l/2N by a factor appropriate for optical klystrons). 
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4. Bandwidth limited by Electron Beam Pulse Length in Linac-Based FELs 

In linac driven FELs, the optical pulse interacts with a fresh electron bunch in each round 

trip. The particle trapping in the ponderomotive potential becomes significant, and the FEL 

intensity reaches saturation when the electron motion in the undulator corresponds to about one 

half of the synchrontron oscillation period. In this case, it is necessary to take into account the gain 

reduction caused by high intensity effect. A simple way to model the gain reduction is to replace 

Eq. (5) by: 

g(oo,'t;n) = gOF(oo)T('t) 
I + P('t; n)[p 

P( · ) = f dP(oo,'t;n) d 't, n doo 00. 

(14) 

(IS) 

In Eq. (14), P is a parameter which sets the scale of the saturation intensity; it is about the 

power at which electrons undergo a one-half period synchrotron oscillation in passing through the 

undulator. According to Eq. (14), the gain reduction for a given frequency 00 and temporal 

position 't is determined by a sum of the optical intensities over all 00, but evaluated at the same 'to 

Thus, Eq. (14) is a model for a gain saturation which is homogeneous in 00 but inhomogeneous in 

't [10]. The gain saturation is homogeneous in 00 because all frequency components which lie 

within the gain bandwidth should contribute equally to the saturation. [Strictly speaking, the 

integral in Eq. (15) should be replaced by an integral which extends to frequency values separated 

by a gain bandwidth from 00. However, we are mainly interested in the cases for which the 

spectral width of the function dP/doo is much narrower than the gain bandwidth, in which case 

Eq. (15) is a good approximation]. On the other hand, the saturation is inhomogeneous in 't since 

optical intensities at two 't's separated by more than the slippage distance NA./c should evolve 

independently [11]. Here we are assuming, as as almost always the case, that the pulse is much 

longer than the slippage distance . 

The evolution of the optical pulse profiles in linac driven FELs can therefore be determined 

by explicitly solving Eqs. (4) and (14). However, the main feature of the spectral property can be 

determined qualitatively as follows: 

In the beginning of the FEL evolution the ratio P('t;n)/P is small so that Eq. (14) reduces to 

Eq. (5). Therefore, the spectral width and the temporal width will both start to narrow as 
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described by Eq. (10) and Eq. (II), respectively. As the optical power increases, the gain 

becomes smaller due to the intensity dependent effect. The saturation takes place first at"t=O where 

the initial gain is highest. However, the optical intensities at 1 .. 0 will keep increasing until they 

reach their own saturation level. Thus, the temporal width of the optical pulse, after initial 

narrowing, will broaden as the optical intensity approaches the saturation level, and eventually 

becomes the same as the width of the electron beam. 

The limiting bandwidth in this case is therefore obtained from Eq. (2) by replacing cr"t by 

~: 

crw=~ 
Ol 41tc~ 

(16) 

Equation (16) is often referred to as the Fourier-transform-of-the-electron-pulse limited, or simply 

the transform limited bandwidth. In terms of the full-width-at-the-half-maximum (FWHM) 

quantities, Eq. (16) becomes 

(ili9.) > 0.44 "-
Ol FWHM - ~ t."t )FWHM (17) 

Equation (16) or (17) is consistent with the result of the FEL experiments in linacs [12]. 

For explicit solution of Eq.(14), we proceed as follows: We integrate Eq. (4) with respect 

to Ol. In doing so, we assume that the width of the optical spectrm is much narrower than the gain 

bandwidth so that 

J d F ( ) d P (Ol,"t;n) = J d P (Ol,"t;n) d = P( . ) 
Ol Ol dOl dOl Ol "t,n . 

The result of integration is 

..d... P ("t;n) = (g("t;n) - a) P ("t;n) + t.S 
dn , 
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where ~S = f dro(dS/dro) is the total spontaneous power, 

g('t;n) = go('t) ; go('t) = goT('t) . 
I+P('t;n)/P 

In solving Eqs. (19) and (20), we introduce the dimensionless parameter 

E=~ 
P 

(20) 

(21) 

which is a very small number, typically 10-8 or less. If go('t) < a-E, the FEL is below threshold, 

and P(n,'t) is of the order ~S for all n. On the other hand, if go('t) > a-E, P(n,'t) evolves to a 

saturated value 

(22) 

In this case the solution of Eq. (20) is 

(P('t;n)+Po('t)l"- 1 = (PO('t)l"-1 e2an 
(P('t;n) + Ps('t)l" + 1 (Ps('t)l" + 1 ' (23) 

where 

(24) 

The behavior for the limiting cases of n are 

P('t;n) = Po('t)(e(go(t).a)n - I); n«ns , (25) 

(26) 

In the above, ns is the number of passes characterizing the saturation of the power; The 

optical power P(t;n) is practically constant at Ps('t) for n 2 ns. The quantity ns is given by 
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_ 1 IjP,(,;)) 
n, - go(';) "~poe,;) (27) 

From Eq. (25), we see that the temporal width begins to narrow at small n. However, at 

saturation, the temporal profile is, assuming that go»a, given by go(';) = goT(,;) from Eq. (22), 

and is the same as that of the electron pulse. The limiting bandwidth is then given by Eq. (16). 

Having determined the function P(l;n), and therefore g(l;n), Eq. (4) can be integrated 

straightforwardly. The behavior of dP/doo at large n is approximately the same as that of the 

solution of the homogeneous equation 

dP(oo,t;n) = dP(oo,t;O) G(,;n)F(ro).an 
doo doo e , 

where 

G(,;;n) = f g(,;;n)dn 

The spectral distribution given by Eq. (28) is a Gaussian shape, with the rms relative width 

We can derive from Eqs (19), (25) and (26) that 

We have therefore 

G(,;;n) - gon for n«n, 

- an for n»n, 
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(30) 

(31) 

(32) 
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= aN' IT ; n»ns . 
V an (33) 

The bandwidth will keep narrowing as described by Eq. (32) and (33) until it reaches the 

Fourier transform (of the electron beam) limit given by Eq. (16). Typically, the bandwidth after ns 

passes (- aNlv gons) is still broader than the Fourier transform limit. Therefore the spectrum of 

optical pulses in a PEL cavity keeps evolving after the intensity reached saturation at around n=ns. 

From Eqs. (16) and (33), the number of passes nw required to reach "spectrum" saturation is 

5 . Intrinsic Limit Due to Noise 

nO) = l (41tC~)2 
a 2NA. (34) 

The bandwidths formula, Eqs. (13) and (16), are applicable when the electron pulse length 

is finite. We now consider the case of a DC electron beam. Thus, we delete the t-dependence in 

Eq. (4), and replace g(oo,'t;n) by g(n)F(oo). The steady state solution is obtained by setting the 

R.H.S . ofEq. (4) to zero; 

lim dP(oo;n) 

n ~ 00 doo 

dPs(oo) 
doo 

1 .dS. 
a-gF(oo) doo 

(35) 

In the above, we have deleted the t dependence because the solution is independent of t. We 

consider a small neighborhood of 00 near 000' so that the expansion Eq. (6) is valid. In Eq. (35), g 

is the limiting value of g(n) for a large n which must be very nearly equal to a. Thus, we write 

(36) 

where 1>«1. The 1)2 term enters with a negative sign so that Eq. (35) is positive definite for all w . 

Inserting Eq. (36) to (35), we obtain 

(37) 

By integrating Eq. (37) (neglecting the co-dependence of dS/doo), we obtain 

9 



Ii = 2n I1S ; I1S = O"N{oQ ~ ~ f dco ~ , 
Pgcn dco dco 

where Pgen = aPs is the generated power. Thus, the limiting distribution is a Lorentzian with 

11 co I = 2noN I1S 
co FWHM Pgen 

(38) 

(39) 

Equations (37) and (39) are similar to the Schawlow-Townes formula [5] except for the 

replacement of the bandwidth of the optical cavity by the gain bandwidth ON. Typically, the 

limiting bandwidth is smaller at least by a factor 10+6 compared to ON. To reach this bandwidth 

via the gain narrowing described by Eq. (33), it will take at least 1012 passes, which corresponds 

to about one day with a IO-m optical cavity. A single mode operation of an FEL with a bandwidth 

similar in magnitude to that given by Eq. (39) has been reported [13] . However, the result is 

controversial experimentally and unlikely theoretically because of the slow approach to the limiting 

bandwidth. The approach to the frequency saturation in long pulse FELs was also studied in 

ref. [14], where the statistical effect of the spontaneous radiation is included. 
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Errata: 

Insert for LBL-29724 
ESG-109 

There are two typographical errors in Page 7 of the paper "The Evolution and Limits of 

Spectral Bandwidth in Free Electron Lasers". 

(1) In the sentence above Eq. (22), P(n,t) should be replaced by P(t;n). 

(ii) Equation (23) should read 

(Po(t) + p(t;n)),, ' ! = (Po(t)),,'! 

(Ps(t) - p(t;n)j"+! (Ps(t)j"+! 
e2an 


